AIR CONDITIONING DETAILS


Understanding Air Conditioning


Energy-Efficient Air Conditioning

Are you considering buying a new air conditioner? Or, are you dissatisfied with the operation of your current air conditioner? Are you unsure whether to fix or replace it? Are you concerned about high summer utility bills? If you answered yes to any of these questions, this publication can help. With it, you can learn about various types of air conditioning systems and how to maintain your air conditioner, hire professional air conditioning services, select a new air conditioner, and ensure that your new air conditioner is properly installed.


Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs and additional home energy savings in New York.

A Technical Explanation of How a System Works


Air conditioners employ the same operating principles and basic components as your home refrigerator. An air conditioner cools your home with a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and condenser coils are serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper. A pump, called the compressor, moves a heat transfer fluid (or refrigerant) between the evaporator and the condenser. The pump forces the refrigerant through the circuit of tubing and fins in the coils. The liquid refrigerant evaporates in the indoor evaporator coil, pulling heat out of indoor air and thereby cooling the home. The hot refrigerant gas is pumped outdoors into the condenser where it reverts back to a liquid, giving up its heat to the air flowing over the condenser's metal tubing and fins.

GET A FREE QUOTE!

Buying a New Air Conditioner for Your Home


Today's best air conditioners use 30% to 50% less energy to produce the same amount of cooling as air conditioners made in the mid 1970s. Even if your air conditioner is only 10 years old, you may save 20% to 40% of your cooling energy costs by replacing it with a newer, more efficient model.


Sizing your Air Conditioners


Air conditioners are rated by the number of British Thermal Units (Btu) of heat they can remove per hour. Another common rating term for air conditioning size is the "ton," which is 12,000 Btu per hour.


How Big should your Air Conditioner Be?


The size of an air conditioner depends on:


  1. how large your home is and how many windows it has;
  2. how much shade is on your home's windows, walls, and roof;
  3. how much insulation is in your home's ceiling and walls;
  4. how much air leaks into your home from the outside; and
  5. how much heat the occupants and appliances in your home generate.

An air conditioner's efficiency, performance, durability, and initial cost depend on matching its size to the above factors.


Make sure you buy the correct size of air conditioner. Two groups—the Air Conditioning Contractors of America (ACCA) and the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)—publish calculation procedures for sizing central air conditioners. Reputable air conditioning contractors will use one of these procedures, often performed with the aid of a computer, to size your new central air conditioner.

Be aware that a large air conditioner will not provide the best cooling. Buying an oversized air conditioner penalizes you in the following ways.


It costs more to buy a larger air conditioner than you need. The larger-than-necessary air conditioner cycles on and off more frequently, reducing its efficiency. Frequent cycling makes indoor temperatures fluctuate more and results in a less comfortable environment. Frequent cycling also inhibits moisture removal. In humid climates, removing moisture is essential for acceptable comfort. In addition, this cycling wears out the compressor and electrical parts more rapidly. A larger air conditioner uses more electricity and creates added demands on electrical generation and delivery systems.


Air Conditioner Efficiency


Each air conditioner has an energy-efficiency rating that lists how many Btu per hour are removed for each watt of power it draws. For room air conditioners, this efficiency rating is the Energy Efficiency Ratio or EER. For central air conditioners, it is the Seasonal Energy Efficiency Ratio or SEER. These ratings are posted on an Energy Guide Label, which must be conspicuously attached to all new air conditioners. Many air conditioner manufacturers are participants in the voluntary EnergyStar® labeling program (see Source List in this publication). EnergyStar®-labeled appliances mean that they have high EER and SEER ratings.


In general, new air conditioners with higher EERs or SEERs sport higher price tags. However, the higher initial cost of an energy-efficient model will be repaid to you several times during its life span. Your utility company may encourage the purchase of a more efficient air conditioner by rebating some or all of the price difference. Buy the most efficient air conditioner you can afford, especially if you use (or think you will use) an air conditioner frequently and/or if your electricity rates are high.

National minimum standards for central air conditioners require a SEER of 9.7 and 13.0, for single-package and split-systems, respectively. But you do not need to settle for the minimum standard—there is a wide selection of units with SEERs of 18.


Before 1979, the SEERs of central air conditioners ranged from 4.5 to 8.0. Replacing a 1970s-era central air conditioner with a SEER of 6 with a new unit having a SEER of 13 will cut your air conditioning costs more than in half.

The sound level of the out door section may be important to you due to the unit's location or proximity to your neighbor's window. Most units today have sound ratings that are measured in decibels.

Room air conditioners generally range from 5,500 Btu per hour to 14,000 Btu per hour. National appliance standards require room air conditioners built after January 1, 1990, to have an EER of 8.0 or greater. Select a room air conditioner with an EER of at least 9.0 if you live in a mild climate. If you live in a hot climate, select one with an EER over 10.


The Association of Home Appliance Manufacturers reports that the average EER of room air conditioners rose 47% from 1972 to 1991. If you own a 1970s-vintage room air conditioner with an EER of 5 and you replace it with a new one with an EER of 10, you will cut your air conditioning energy costs in half.

What to Look for in Professional Service


When your air conditioner needs more than the regular maintenance described previously, hire a professional service technician. A well-trained technician will find and fix problems in your air conditioning system. However, not all service technicians are competent. Incompetent service technicians forsake proper diagnosis and perform only minimal stop-gap measures.


Insist that the Technician:



  1. check for the correct amount of refrigerant;
  2. test for refrigerant leaks using a leak detector;
  3. capture any refrigerant that must be evacuated from the system, instead of illegally releasing it to the atmosphere;
  4. check for and seal duct leakage in any part of your system that runs in the attic, crawl space, or garage;
  5. measure airflow through the evaporator coil;
  6. verify the correct electric control sequence and make sure that the heating system and cooling system cannot operate simultaneously;
  7. inspect electric terminals, clean and tighten connections, and apply a non-conductive coating if necessary;
  8. oil motors and check belts for tightness and wear;
  9. check the accuracy of the thermostat.
GET A FREE QUOTE!

How to Choose a Contractor


Choosing a contractor may be the most important and difficult task in buying a new central air conditioning system. Ask prospective contractors for recent references. If you are replacing your central air conditioner, tell your contractor what you liked and did not like about the old system. If the system failed, ask the contractor to find out why. The best time to fix existing problems is when a new system is being installed.


When designing your new air conditioning system, the contractor you choose should:

  1. use a written calculation procedure or computer program to size the air conditioner;
  2. provide a written contract listing the main points of your installation that includes the results of the cooling load calculation;
  3. give you a written warranty on equipment and workmanship.



Avoid making your decision solely on the basis of price. The quality of the installation should be your highest priority because quality will determine energy cost, comfort, and durability.

Looking for a price? Get a no cost, no obligation free estimate.

  • Our Locations

    County Comfort Home Solutions 

    265 US-6

    Mahopac, NY 10541

    1-914-326-0896


    County Comfort Home Solutions

    383 S Riverside Ave

    Croton-On-Hudson, NY 10520

    1-914-477-2347

  • Putnam, NY

    Brewster, Carmel, Cold Spring, Garrison, Lake Peekskill, Mahopac, Mahopac Falls, Patterson, & Putnam Valley

  • Westchester, NY

    Amawalk, Ardsley, Armonk, Baldwin Place, Bedford, Bedford Hills, Briarcliff Manor, Bronxville, Buchanan, Chappaqua, Cortlandt, Cortlandt Manor, Crompond, Cross River, Croton Falls, Croton On Hudson, Dobbs Ferry, Eastchester, Elmsford, Goldens Bridge, Granite Springs, Harrison, Hartsdale, Hastings On Hudson, Hawthorne, Irvington, Jefferson Valley, Katonah, Larchmont, Mamaroneck, Maryknoll, Millwood, Mohegan Lake, Montrose, Mount Kisco, Mount Pleasant, Mount Vernon, New Rochelle, North Salem, Ossining, Peekskill, Pelham, Pleasantville, Port Chester, Pound Ridge, Purchase, Purdys, Rye, Scarsdale, Shrub Oak, Somers, South Salem, Tarrytown, Thornwood, Tuckahoe, Valhalla, Verplanck, Waccabuc, West Harrison, White Plains, Yonkers, Yorktown, & Yorktown Heights